INDEPENDENT VECTOR ANALYSIS ASSISTED ADAPTIVE BEAMFOMRING FOR
SPEECH SOURCE SEPARATION WITH AN ACOUSTIC VECTOR SENSOR

Yichen Yang', Xianrui Wang", Wen Zhang', Jingdong Chen',Chaoyu Shi?, Mengyao Zhu?, and Chunjian Li*

ICenter of Intelligent Acoustics and Immersive Communications,
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China
2 Audio Department, Huawei CBG, Shanghai, China

ABSTRACT

Acoustic vector sensor (AVS), as a compact sensor with the capabil-
ity of forming a frequency-invariant spatial beampattern over the 3D
space, has potential in source separation. A straightforward way to
achieve source separation with AVS is through adaptive beamform-
ing. Such a method requires the direction-of-arrival (DOA) infor-
mation, which is challenging to estimate accurately in reverberant
environments. To circumvent this issue, we present a framework
jointly implementing adaptive beamforming and independent vector
analysis (IVA). Different from the conventional beamforming, the
presented method only require rough DOA estimation for initializa-
tion. It iteratively refines the estimates of source DOA and signal
statistics. The proposed method has great advantages of improv-
ing source separation performance and enhancing DOA estimation
accuracy. Simulations demonstrate the properties of the developed
method.

Index Terms— Adaptive beamforming, independent vector
analysis, acoustic vector sensor

1. INTRODUCTION

Speech enhancement is of great importance for audio processing as
speech signals recorded by microphones are normally contaminated
by reverberation and interference. Various methods have been devel-
oped over the last few decades [1], among which source separation
is one important category of methods that have to be used for speech
enhancement in environments where there exist multiple sources si-
multaneously [2].

Adaptive beamforming has been widely used for source separa-
tion when the microphone array geometry is known [1, 3, 4]. Gen-
erally speaking, adaptive beamforming needs to estimate certain pa-
rameters and signal statistics, e.g., DOA of each source, covariance
matrices of noise and interferences. Many efforts have been devot-
ed to the estimation of such parameters and statistics in adversarial
environments including the latest ones that attempt to estimate those
parameters using deep neural network (DNN) [5, 6, 7]. However,
the estimation performance often suffers from significant degrada-
tion in practical environments regardless of whether traditional or
deep methods are used.

In contrast to adaptive beamforming, blind source separation (B-
SS) achieves source signal separation from observations based on
independent component analysis (ICA) [9, 10], which requires little
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Fig. 1. (a) 3D intensity probe (left) and scanning electron micro-
scope photo (right) of Microflown [27]. (b) SENNHEISER AMBEO
VR mic (left) and corresponding microphone array setup (right).

or no a priori information [8]. The multivariate extension of ICA,
i.e., IVA, has been successfully applied to BSS of speech signals
[11, 12] as speech signals are broadband in nature and IVA can help
circumvent the problem of permutation, which is inherent to the I-
CA based algorithms. To improve the robustness and accelerate the
convergence of IVA, the auxiliary function-based IVA (AuxIVA) is
proposed [13]. In order to further improve the separation perfor-
mance, geometry constrained separation methods [14, 15, 16, 17]
have been developed, which impose the beamforming constraint on
the demixing filters of BSS. However, given that the DOA estimates
easily become biased in real multi-source environments, the optimal
demixing filter is difficult if not impossible to achieve. Some other
methods attempt to improve the separation performance by combin-
ing BSS algorithms and beamforming. For example, in [18, 19],
null beamforming is introduced in the frequency-domain ICA and in
[20, 21] beamforming is cascaded directly with BSS. The work of
[21] presents a framework that unifies differential beamforming and
independent low-rank matrix analysis (ILRMA). This framework,
however, faces two challenging issues: 1) the DOA of source signals
must be accurately estimated, and 2) the white noise gain of the d-
ifferential beamformers at low frequency bins should be sufficiently
high.

Recently, AVS [22] has been investigated for source separation
[23, 24, 25, 26]. Given the fact that it can simultaneously record the
sound pressure and particle velocity at the same spatial point, AVS
can form requency-invariant beampatterns and steer the main lobe
towards any direction, so the speech distortion after enhancement is
generally small. This make AVS a good choice for speech source
separation in the 3D space. Figure 1 shows several types of AVS
Sensors.

In this paper, we present an approach with AVS that jointly op-
timizes adaptive beamforming and AuxIVA. It performs speech sep-
aration in an iterative manner.IVA is firstly used as a parameter esti-
mator, whose outputs are subsequently used by adaptive beamform-
ing to extract target signals. The beamforming outputs are then fed to
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IVA to update statistical estimation. Simulation results demonstrate
that this presented method outperforms two widely studied baseline
methods.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Let us consider the multi-source scenario under reverberant condi-
tions, when the window length in the short-time Fourier transform
(STFT) is longer than that of the room impulse responses (RIRs), an
instantaneous mixture model in the STFT domain can be written as

=3

where s (¢, f), x(¢, f), and v(t, f) denote, respectively, the source
signal, and the observation and additive noise signals, f = 1,..., F
and t = ., T are the indexes of the frequency bins and time
frames, respectively, k and K denote, respectively, the index and the
number of sources, ai(f) € CM*! denotes a set of the RIRs and
M denotes the number of microphone channels. Now the problem
of source separation is to extract the source signals, i.e., sk(t, f),
given the microphone signals x (¢, f).

sk(t, [)+v(t, ), ey

3. SOURCE SEPARATION ALGORITHMS

3.1. Adaptive beamforming

The source signal extraction through beamforming can be expressed
as

h"(f)x(t, f), 2)

where h(f) € and z(t, f) represent the spatial filter and
the output signal for the source signal of interest, and & denotes the
conjugate-transpose operator. For adaptive beamforming, given that
the covariance matrix of the noise and interference is difficult to es-
timate accurately, the minimum power distortionless response (MP-
DR) beamformer is often used to extract the desired signal from the
look direction with the minimum output power, for which the cost
function is formulated as

Z(tvf) =

CIMXl

min b (f)@x(f)B(f) subject o B (£)d(O1) =1, ()

where @y« (f) is the covariance matrix of the microphone signals
and d(©y,) is the steering vector of AVS. As shown in [], the steering
vector pointing at azimuth angle ¢, and elevation angle 65 can be
denoted as

d(©k) =[1, cosbicospr, cosbisingk, sin Ok}T , @
where T stands for the transpose operator.
i (C]
he, (f) = (1)d(9%) )
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When the DOAs of the sources can be accurately estimated, M-
PDR can achieve good separation performance [26]; however, in
multiple-source scenarios, the estimates of DOAs and covariance
matrices are generally biased, especially in reverberant and noisy
environments [28][29], leading to significant degradation in beam-
forming performance. In this work, we propose to incorporate BSS
as a pre-processing for parameter estimation.

3.2. Independent vector analysis

In IVA, the demixing system can be described as

s(t, f) = W()x(t f), (©)

(CKX]M (CK><1

where W(f) € is the demixing matrix and §(¢, f) €
is the separated signals. The demixing matrix W = {W(f)}/_,
can be estimated by minimizing the following cost function

JW)=>"
t=1k

where G (8x(t)) = — log p(8x(t)) is the contrast function, which can
be expressed for a typical spherical multivariate distribution as

G [8k(t)] = Gr(ri(t)), 8

ri(t) = [8(8)]]2 = /Zm (t, )2 ©)

where || - ||2 represents the Ly norm and Gg(rk(t)) represents a
real-valued function.

While it has demonstrated great potential, IVA faces two main
limitations: 1) all parameters are estimated blindly though the ge-
ometry of the array is often given as the a priori information; 2)
IVA extracts the source mainly by placing a null towards the inter-
ference direction [30], which has limited separation performance in
reverberation conditions.

K F

(G (8x(t))] — 2 Y log|det W(f)|, (7)
1 =1

4. PROPOSED IVA-ASSISTED ADAPTIVE
BEAMFORMING SYSTEM

In this work, we propose the following IVA-assisted adaptive beam-
forming method, as illustrated in Fig. 2. After IVA, the multi-
channel back-projection (BP) [31] is implemented to deal with the
issue of scale ambiguity and recover the spatial information. By
incorporating the spatial information, the adaptive beamformer is
able to further improve the separation performance.

To obtain the demixing matrix of IVA, the auxiliary function-
based optimization [13] is used and the auxiliary function is de-
scribed by omitting the constant term as

F.K F
V)=3 S WOV Iwe(f) D log| det W()],
frk=1 f=1
(10)

where V = {V(f)}5f f=1,,—1 is the auxiliary variable. Using the
auxiliary function, the demlxmg matrix can be optimized by updat-
ing the auxiliary variables, i.e.,

re(t) = [lyr(®)ll2, (11
vin) =5 [ oxio] . a2

and updating the demixing matrix, i.e.,
wi(f) + W) Vi) e, (13)

wi(f) = wi(D/WEOVe(Hwe(),  (14)

where E[-] denotes the expectation operator. The output of IVA is
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Fig. 2. Flowchart of the proposed method with joint optimization.

Input: x(t, f)
Initialize: W, ©, yinit(¢, f)
Repeat
Step 1: Calculate the demixing matrix WV of IVA using
(11)—(14).
Step 2: Calculate the multi-channel output of the IVA
Yva(t, f) using (6) and (15).
Step 3: Calculate the optimal filter Hg and the output

yiva-se(t, f) of the MPDR using (16)—(18).
Until convergence

Table 1. The proposed algorithm.

then

yraa(t, f) = W(f) " [ex 0 8(t, £)], 15)

where ey, is the unit vector with the kth element being 1 and others
being 0, and o represents the Hadamard product.
The MPDR beamformer can be obtained as

T
By () = 7 S yhaalt yfmalt £, (16)
t=1
o By ()dGn)
Pon ) = (60 by (1)d(60)' n

where iyy( f) is the averaged covariance matrix of the IVA output
in (15), and the DOA of kth source Oy, is estimated in the beam-
forming stage.

The final output of the proposed system is

yravasr(t, f) = hgk (F)yrava(t, f). (18)

The proposed algorithm is summarized in Table 1.

5. EXPERIMENTAL EVALUATION

5.1. Experimental setup

In this section, we study the performance of the proposed method
and compare it with two baseline methods in noisy and reverberant
environments. A room of size (8§ x6x3) m is simulated, where an
AVS is located at (4, 2, 1.5) m. The sources are set randomly in the
3D space in the room with the minimum angular septation of 30°

B MPDR (cst. DOA)
BN MPDR (true DOA)

B AuxIVA with init. (est. DOA)
M AuxIVA with init. (true DOA)

B Proposed (est. DOA)
B Proposed (true DOA)
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Fig. 3. The average SDR (dB) of the studied methodsin different
reverberation conditions.

between sources and the distance between the microphone and each
source is randomly assigned to be larger than 1 m. Fifty two-source
mixtures are simulated by convolving the speech randomly picked
from the CMU ARCTIC dataset [32] with the RIRs generated by
composing three bidirectional microphones along each coordinate
axis in Cartesian coordinate system and one omnidirectional micro-
phones at the origin. using the image-source method [33]. The rever-
beration time T§o varies from 200 to 400 ms and the white Gaussian
noise is added with SNR of 30 dB. All signals are sampled at 16
kHz. The STFT is implemented with a Hanning window of length
256 ms, and the window shift is 64 ms.

The Signal-to-Distortion Ratio (SDR) and signal-to-interferences
ratio (SIR) [34] are used to evaluate the separation performance, and
the perceptual evaluation of speech quality (PESQ) is used to e-
valuate the speech quality. The reference signals are obtained by
convolving the speech signals with the RIRs truncated at 32 ms.

The separation performance of the proposed method is com-
pared with two baseline methods: the MPDR beamformer with an
input of the multiple source DOA estimation [26] and the Aux-
IVA algorithm initialized with the MPDR beamforming [20]. A
hyperparameter-free algorithm based on the orthogonal constraints
[35] is used in the over-determined situation (M > K) in our sim-
ulations. The multiple signal classification (MUSIC) algorithm is
used for DOA estimation in the initial stage.

5.2. Results and discussion

The results of average SDR under different reverberation times are
shown in Fig. 3. Compared with the two baseline methods, the pro-
posed one achieved the best average SDR performance in all the
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Fig. 4. A segment of log-magnitude spectra of a mixture and the separated signals.

Teo 200ms  300ms 400 ms
MPDR 1.57 1.33 1.23
AuxIVA with init. 2.05 1.70 1.47
Proposed 2.35 1.88 1.60

Table 2. The average PESQ of the studied methods.

Tso | 200ms  300ms 400 ms
Initialization 12.94 24.33 29.40
Convergence 242 4.20 5.63

Table 3. The average angular localization error (°) of the proposed
method.

studied conditions. The use of true DOAs dose bring the SDR im-
provement for the MPDR method given that a more accurate steering
vector is used. However, it brings little help to AuxIVA because the
DOAs are only used in the initial step. Interestingly, for the proposed
method , the results using the DOA estimates during the iteration are
slightly better that those using the true DOAs. One possible reason is
that the most statistically independent components point to direction-
s that are different from the true DOAS in reverberant environments
[17].

To analyze speech quality, a segment of the log-magnitude spec-
tra of the separated signals is shown in Fig. 4. Compared with two
baseline methods, separated signals of the proposed method contain
the most precise target signals and least interference, especially in
the low-frequency region. The results of average PESQ for all the
studied methods are shown in Table 2, which again confirms that the
proposed method outperforms the two baseline method.

To further investigate the DOA estimation results using the pro-
posed method, the average angular localization error during the iter-
ation under different reverberation conditions are shown in Table 3.
In comparison with the original multiple-source DOA estimation re-
sults obtained from the MUSIC algorithm, the average location error
decreases significantly using the joint optimization method.

The average SDRs as a function of the iteration under the rever-
beration time of 200 ms are plotted in Fig. 5.2(a). To verify if MPDR
can further suppress the interference components using the outputs
of the IVA in the proposed method, Fig. 5.2(b) shows plots the av-

T T T T T T T T T
16 B B> > B B B
14} 1
—~
m
IS
=
Bl ]
17}
—©- MPDR
10 —B- AuxIVA with init. | ]
(a) > Proposed
8 : : : ; ; ! ! ! !
T T T T T T T
R Rt SRR EEE Rl
>
,
.
30 /’ ,A———-A———A'—' -=—A---A- - -
> -
@ I
gt ), i
~ 1 7’
2 | A
D20 1y 1
1
P —©- MPDR
sl B~ AuxIVA with init.
[t =/ Filter of IVA (Proposed)
'y (b) > Filter of MPDR (Proposed, final)
10
. . ! ! ! ! ! ! !
0 6 24 30

2 i 18
Iteration

Fig. 5. The average: (a) SDR (dB) and (b) SIR (dB), both as a
function of the iteration number.

erage SIRs as a function of the iteration number. The results show
that the output of MPDR contains less interference components as
compared with the output of IVA. Meanwhile, IVA in the proposed
method sightly improves the SIR as compared with the original Aux-
IVA because the auxiliary variable in the proposed method is refined
based on the beamforming outputs during the joint optimization.

6. CONCLUSION

This paper presented an IVA-assisted adaptive beamforming method
with an AVS. With a rough estimates of the source DOAs, the de-
veloped method iteratively refines the estimates of the source DOAs
and signal statistics. Simulation results demonstrated that significant
improvement in terms of both separation and speech quality has been
achieved in reverberant environments.
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