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ABSTRACT
Spatial information can help improve source separation performance.
Numerous spatially informed source extraction methods based
on the independent vector analysis (IVA) have been developed,
which can achieve reasonably good performance in non- or weakly
reverberant environments. However, the performance of those
methods degrades quickly as the reverberation increases. The
underlying reason is that those methods are derived based on the
multiplicative transfer function model with a rank-1 assumption,
which does not hold true if reverberation is strong. To circumvent
this issue, this paper proposes to use the convolutive transfer
function (CTF) model to improve the source extraction performance
and develop a spatially informed IVA algorithm. Simulations
demonstrate the efficacy of the developed method even in highly
reverberant environments.

Index Terms— Independent vector analysis, spatially informed
source extraction, convolutive transfer function.

1. INTRODUCTION

In acoustic applications, the signals of interest are often
contaminated by interference, reverberation, and noise, which
will not only impair the speech quality and intelligibility but
also degrade the performance of automatic speech recognition
(ASR) [1, 2]. Blind source separation (BSS) aims at recovering
the source signals from observed mixtures with minimal prior
information about the source activities and the mixing system. A
popular class of BSS algorithms is rooted in frequency-domain
independent component analysis (FD-ICA), which attempts to
separate source signals by exploiting statistical independence
between different sources in every frequency bin individually [3–5].
But the permutation problem is inherent to FD-ICA though a
post-processing step can help mitigate this issue [6, 7]. As a
multivariate extension of ICA, independent vector analysis (IVA)
not only exploits the independence among sources, but also enforces
the dependence among different frequency components of every
extracted signal [8,9]. Theoretically, IVA should not suffer from the
inner permutation problem; but in practice, IVA may fail to align
distant frequency components as they are not strongly dependent,
leading to the so-called block permutation problem [10]. Besides,
the output signals are arbitrarily ordered, which is known as the
outer permutation problem.

Most source extraction or separation applications focus on
separating different source signals coming from different directions.
It is straightforward to think about how to use this spatial information
in source separation since spatial information of the sound sources
is known or can be well-estimated [11, 12]. Spatial information
associated with microphone arrays has been widely used in
beamforming-based source extraction methods [13–15]. Intuitively,
incorporating spatial information into ICA or IVA-based source
extraction should help improve performance, which has attracted
considerable attention. For example, studies showed that spatially
informed source extraction methods can extract the desired sources

and solve both the block and the outer permutation problems with a
faster convergence speed [16–19]. In [20,21], a unified probabilistic
framework for spatially informed source separation and extraction
was proposed, which was also generalized to incorporate statistics
of the background noise [22].

Most of the IVA-based source extraction methods are relying
on a rank-1 assumption, which requires that the analysis window
length exceeds the effective length of the acoustic impulse
response (AIR) so that the time-domain signal can be represented
by the multiplicative transfer function (MTF) model in the short-
time Fourier transform (STFT) domain. However, this requirement
cannot be guaranteed in practical reverberant environments,
leading to dramatic performance degradation [23]. To overcome
this limitation, full-rank covariance matrix analysis (FCA) was
introduced [24] where each source image is modeled with a time-
invariant full-rank spatial covariance matrix (SCM) and a time-
varying variance. However, FCA models are challenging to identify
as a large number of parameters are involved. To decrease the
number of free parameters, non-negative matrix factorization (NMF)
[25] was leveraged to model the power spectrogram, leading to
many multichannel NMF (MNMF) methods [26–28]. However, the
computational burden of those algorithms is heavy, and it is difficult
to incorporate with prior spatial information.

An alternative model for the signals in reverberant environments
is based on the convolutive transfer function (CTF) [29], which
uses convolution rather than multiplication in the STFT domain
to represent the time-domain convolution. Recently, a CTF-
based MNMF (CTF-MNMF) method was proposed, which showed
superiority in highly reverberant environments [30]. However, its
convergence speed is low and it restricts the length of the CTF
filters to be equal to the number of microphones. To circumvent
the limitations of the method in [30], we develop a method in this
paper, which can be viewed as the extension of the work in [20–22]
with the CTF model. The proposed spatially informed source
extraction method can achieve better source extraction performance
in reverberant environments.

2. SIGNAL MODEL

We consider a reverberant acoustic scenario with N source signals
picked up byM microphones (M ≥ N). The observed signal at the
mth microphone can be expressed as

xm(t) =

N∑
n=1

hmn ∗ sn(t) + vm(t)

=

N∑
n=1

cm,n(t) + vm(t), m = 1, 2, . . . ,M, (1)

where t is the discrete-time index, hmn is the AIR from the nth
source to the mth microphone, sn(t) denotes the nth source signal,
∗ represents the linear convolution, vm(t) is the additive background
noise at the mth microphone, and cm,n(t) = hmn ∗ sn(t) stands



for the contribution of the nth source to the mth microphone. It
is assumed that source signals are mutually independent and the
background noise is uncorrelated to the source signals.

In the STFT domain, the signal model in (1) can be expressed as

xm,i,j =

N∑
n=1

cm,n,i,j + vm,i,j , (2)

where i ∈ {1, 2, . . . , I} is the frequency index, j ∈ {1, 2, . . . , J}
denotes the time-frame index, I, J are the numbers of frequency bins
and time frames, cm,n,i,j and vm,i,j are the STFTs of cm,n(t) and
vm(t), respectively. With the CTF approximation [29], we have

cm,n,i,j =

Ln−1∑
l=0

hm,n,i,l sn,i,j−l, (3)

where hm,n,i,l are the band-to-band filter coefficients and Ln is the
length of the CTF filter. In a vector form, the CTF mixing system
can be represented as

xi,j =

N∑
n=1

cn,i,l + vi,j

=

N∑
n=1

Ln−1∑
l=0

hn,i,l sn,i,j−l + vi,j

= H̃is̃i,j + vi,j , (4)

where

xi,j = [x1,i,j , x2,i,j , . . . , xM,i,j ]
T ∈ CM×1,

cn,i,l = [c1,n,i,j , c2,n,i,j , . . . , cM,n,i,j ]
T ∈ CM×1,

vi,j = [v1,i,j , v2,i,j , . . . , vM,i,j ]
T ∈ CM×1,

hn,i,l = [h1,n,i,l, h2,n,i,l, . . . , hM,n,i,l]
T ∈ CM×1,

H̃i = [H1,i, H2,i, . . . , HN,i] ∈ CM×L,

Hn,i = [hn,i,0, hn,i,1, . . . , hn,i,Ln−1] ∈ CM×Ln ,

s̃n,i,j = [š1,i,j , š2,i,j , . . . , šN,i,j ]
T ∈ CL×1,

šn,i,j = [sn,i,j , sn,i,j−1, . . . , sn,i,j−Ln+1] ∈ C1×Ln ,

and L =
∑N
n=1 Ln ≤ M . If the STFT window is sufficiently long

and can cover the effective part of the AIRs, Ln can be set to 1 and
(4) degenerates to the conventional MTF-based mixing model.

3. PROPOSED ALGORITHM

3.1. Source extraction

In order to extract target signals, we need to estimate a group of
spatial filters [22, 31] to be applied to the sensor signals xi,j

Wi =

[
WS

i

Ui

]
∈ CM×M , (5)

where

WS
i = [W1,i, W2,i, . . . , WN,i]

H ∈ CL×M

is the source extraction matrix and

Wn,i = [wn,i,0, wn,i,1, . . . , wn,i,Ln−1] ∈ CM×Ln

is the group of filters corresponding to source n.
The noise separation matrix Ui ∈ CM×K is defined as

Ui = [u1,i, u2,i, · · · , uK,i]
H ,

where uk,i is the kth background noise filter. We model the
background noise as

vi,j = Ψizi,j , (6)
where Ψi ∈ C

M×K (K = M − L) is the noise transformation

matrix. The columns of Ψi are assumed to be linearly independent
of the columns of the signal mixing matrix H̃i and

zi,j = [z1,i,j , , z2,i,j , . . . , zK,i,j ]
T (7)

consists of decomposed noise components [31]. Under this
assumption, the noise can be separated from source signals by
applying Ui to the observations xi,j in the form of (4). Since we do
not aim at extracting the noise components, a specific structure of
Ui can be chosen to derive a computationally efficient algorithmic
solution. A straightforward choice is given in [22, 31]

Ui = [Ji, −IK ] ∈ CK×M , (8)

where Ji ∈ CK×L contains the adjustable parameters and IK is an
identity matrix of size K ×K.

Applying these spatial filters, we obtain

yn,i,j,l = wH
n,i,lxi,j , (9)

ẑk,i,j = uHk,ixi,j , (10)

where yn,i,j,l is the estimated source signal with l taps delay
and ẑk,i,j is the filtered background noise which may stay mixed.
Estimating source signals using (9) in reverberant environments will
introduce spatial distortion [32], so we estimate the spatial images
as in CTF-MNMF [30]. We define ˆ̄Hi = W−1

i and partition it with

the same structure as the mixing matrix H̄ =
[
H̃i,Ψi

]
, i.e.,

ˆ̄Hi =
[
Ĥ1,i, Ĥ2,i, . . . , ĤN,i, Ψ̂i

]
. (11)

Then the multichannel Wiener filter (MWF) is used to estimate the
spatial images [27] [30]

ĉn,i,j =
(
Ĥn,iΛn,i,jĤ

H
n,i

)(
WH

i Λ−1
i,jWi

)
xi,j , (12)

where

Λi,j =


Λ1,i,j

Λ2,i,j

· · ·
ΛN,i,j

Λz,i,j

 ,
= diag (Λ1,i,j , Λ2,i,j , · · · , ΛN,i,j Λz,i,j) ,

Λn,i,j = diag
(
|yn,i,j,0|2, |yn,i,j,1|2, · · · , |yn,i,j,LN−1|2

)
,

Λz,i,j = diag
(
|ẑ1,i,j |2, |ẑ2,i,j |2, · · · , |ẑK,i,j |2

)
.

3.2. Probabilistic Model

Now we construct a cost function for estimating the set of all spatial
filters W = {W1,W2, . . . ,WI}. We model the source signals
with a time-varying complex Gaussian distribution, which has been
widely used in the literature [8, 9], i.e.,

p(sn,j) =
1

πσ2
n,j

exp

(
−||sn,j ||

2
2

σ2
n,j

)
, (13)

where || · ||2 stands for `2 norm, σ2
n,j is the broadband time-varying

signal variance, and

sn,j = [sn,1,j , sn,2,j , · · · , sn,I,j ]
T ∈ CI×1.

The filtered background noise may stay mixed, thus it is assumed
to be more stationary than the source signals and close to being
normally distributed. Therefore, we assume

ẑi,j = [ẑ1,i,j , ẑ2,i,j , . . . , ẑK,i,j ]
T (14)

to follow a time-invariant complex Gaussian distribution

p(ẑi,j) =
1

πK | det Ri|
exp

(
−ẑHi,jR

−1
i ẑi,j

)
, (15)

where Ri ∈ CK×K is the covariance matrix of the separated noise.



As shown in [29], the direct path and early reflections, which
encode the source location and array geometry information, are
mainly represented by hn,i,0 while the late reverberation, which is
much more diffuse, is embedded in hn,i,l, l > 0. Thus, we only
impose constraints on wn,i,0, n ∈ N , where N denotes the set of
source signals whose direction is given or pre-estimated. We choose
the prior distribution for wn,i,0, n ∈ N as in [20, 22]

p (wn,i,0) =

√
λMn√
πM

exp

(
−

I∑
i=1

λn||wn,i,0 − di,θn ||
2
2

)
, (16)

where λn is a user-defined parameter and di,θn ∈ CM×1 is the
free-field steering vector of the look direction θn, i.e.,

[di,θn ]m = exp

(
j

2πfi
c
‖rm − r1‖2 cos θn

)
, (17)

fi is the frequency, c is the speed of sound in air, and rm is the
location of the m th microphone.

By adopting the maximum a posteriori (MAP) framework [20–
22], the spatially informed negated likelihood function is denoted as

J (W) =− 2J

I∑
i=1

log |det Wi|

+

N,I,J∑
n,i,j=1

Ln−1∑
l=0

(
log rn,j−l +

||yn,j,l||22
rn,j−l

)

+

I,J∑
i,j=1

(
log | det Ri|+ ẑHi,jR

−1
i ẑi,j

)

−
∑
n∈N

I∑
i=1

log p(wn,i,0) + C, (18)

where C is a constant and

yn,j,l = [yn,1,j,l, yn,2,j,l, · · · , yn,I,j,l]
T ∈ CI×1.

We define the estimated source signal energy as

rn,j = ||wH
n,i,0xi,j ||22. (19)

3.3. Optimization

In the following, we deduce update rules for optimizing (18) based
on the auxiliary function technique. Let us define p as the iteration
index. As shown in (18), once ẑi,j and Ri are fixed, the noise
term does not influence the estimation of the set of source extraction
matrices Ws = {WS

1,W
S
2, . . . ,W

S
I} anymore. Therefore, to

derive update rules forWS, we drop the noise term and the constant
term in (18). Since the prior term is quadratic, we construct an
auxiliary function as

J pAux (W|Wp) =− 2J

I∑
i=1

log | det Wi|

+

N,I,J∑
n,i,j=1

Ln−1∑
l=0

(
wH
n,i,lQ

p
n,i,lw

H
n,i,l

)

+
∑
n∈N

I∑
i=1

λn||wn,i,0 − di,θn ||
2
2, (20)

whereWp is the estimate ofW at the pth iteration and

Qp
n,i,l =

1

J

J∑
j=1

xi,jx
H
i,j

rpn,j−l
(21)

is the weighted covariance matrix of input signals at the pth iteration.
The energy of the estimated source signal at the pth iteration, rpn,j−l,
is calculated by (19) with wp

n,i,0. Now WS can be updated by

1 m

0.5 m

1 m

1.5 m

10 m

8 m

1 m

Target 1

Target 2

Interferences

Microphone array

Fig. 1. Illustration of the simulation setup. Condition: T60 = 0.7 s,
SNR = 30 dB, and SIR∈ [15 dB, 30 dB].

minimizing the auxiliary function.
Firstly, for unconstrained sources, i.e., n /∈ N , the cost

function (20) is identical to overdetermined IVA (OverIVA)
[31]. Its optimization is known as the hybrid exact-approximate
diagonalization (HEAD) problem, which can be efficiently solved
with the IP algorithm [9]:

w̃p
n,i,l =

(
Wp

iQ
p
n,i,l

)−1
e(L1+L2+...+Ln−1+l+1), (22)

wp+1
n,i,l = w̃p

n,i,l/
[
(w̃p

n,i,l)
HQp

n,i,lw̃
p
n,i,l

]− 1
2
, (23)

where e(L1+L2+...+Ln−1+l+1) ∈ R
M×1 is a unit column vector

whose (L1 + L2 + . . .+ Ln−1 + l + 1)th element equals to one.
Then, for constrained sources, i.e., n ∈ N , we first update the

first column of corresponding extraction matrix, Wn,i (as the spatial
constraint is only imposed on wn,i,0). Because of the quadratic term,
it cannot be optimized with the IP method, so we utilize the vector-
wise coordinate descent (VCD) algorithm [17, 22, 33]:

ppn,i =
(
Wp

i Q̃
p
n,i,0

)−1

e(L1+L2+...+Ln−1+1), (24)

p̃pn,i = λn
(
Q̃p
n,i,0

)−1

di,θn , (25)

µpn,i =
(
ppn,i

)H
Q̃p
n,i,0p

p
n,i, (26)

µ̃pn,i =
(
ppn,i

)H
Q̃p
n,i,0p̃

p
n,i, (27)

wp+1
n,i,0 =


p
p
n,i√
µ
p
n,i

+ p̃pn,i, if µ̃pn,i = 0,

µ̃
p
n,i

2µ
p
n,i

(
−1+

√
1+

4µ
p
n,i

|µ̃p
n,i|

2

)
ppn,i+p̃pn,i, else,

(28)

where Q̃p
n,i,0 = Qp

n,i,0 + λnIM . The remaining columns of Wn,i

are updated with (22) and (23).
Finally, since we dropped the noise term in (20), we rely on

an orthogonal constraint (OC) [31] to separate background noise
from source signals. The filtered background noise and interference
signals are assumed to be orthogonal to source signals, i.e,

WS
iCiU

H
i = 0L×K , (29)

where

Ci =
1

J

J∑
j=1

xi,jx
H
i,j

is the sample-averaged SCM of the observed signals. Substituting
(8) into (29), we obtain(

WS
iCiE

H
S

)
JHi = WS

iCiE
H
N , (30)

where ES = [IL,0L×K ] and EN = [0K×L, IK ]. Then Ji can be



updated by solving (30), resulting in

Jp+1
i =

{
ENCi

[(
WS

i

)p+1
]H}

{
ESCi

[(
WS

i

)p+1
]H}−1

. (31)

Note that the fundamental work of [22] is extended here to the case
Ln > 1.

4. SIMULATIONS

In this section, we study the performance of the proposed source
extraction method and compare it with the source extraction method
in [22, 31]. We consider a room of size 10 m × 8 m × 3 m. For
ease of exposition, we use the Cartesian coordinate system to denote
the positions in the room and the bottom left corner of the room
is chosen as the origin. An 8-element uniform linear microphone
array with spacing of 5 cm is horizontally placed with its center at
(5 m, 1 m, 1 m). Two target speakers are at the directions (40◦ + ε1)
and (120◦ + ε2), respectively, where ε1, ε2 denote the DOA
observation errors, which are assumed to be uniformly distributed
in [−5◦, 5◦]. The horizontal distance between each source and
the array is randomly generated, which is uniformly distributed
in [1 m, 1.5 m] as illustrated in Fig.1. There are ten interfering
sources, whose positions are again randomly generated, with
angles being uniformly distributed in [0◦, 180◦] and the horizontal
distance being uniformly distributed in [3 m, 4 m]. The heights of
all the sources, including both targets and interferences, are also
randomly generated and uniformly distributed in [1.5 m, 1.8 m]. The
signal-to-interference ratio (SIR) is controlled to be in the range of
[15 dB, 30 dB].

Both target and interference speech are arbitrarily taken from
the TIMIT database [34] with a sampling rate of 16 kHz. The
AIRs are generated with the image model method [35], where the
corresponding reverberation time, T60, is approximately 0.7 s by
using the Python toolkit gpuRIR [36]. The microphone signals
are generated by convolving the AIRs with the clean signals taken
from TIMIT. White Gaussian noise is then added at a signal-to-
noise ratio (SNR) of 30 dB. One hundred Monte Carlo simulations
are carried out and the average is used to measure the extraction
performance. For the STFT analysis, the von Hann window of length
128 ms is used and the frame overlap is 75%. We consider two
situations, the spatially informed case and the unconstrained (blind)
case, i.e., λ = 0. For the unconstrained case, we consider two
configurations for the proposed algorithm, CTF1 with L1 = L2 = 2
and CTF2 with L1 = L2 = 3. We choose [31] as the baseline
and refer it to MTF for the unconstrained case. For the spatially
informed case, the configuration of L for the proposed algorithm
is set analogously to the unconstrained case and we refer them
to CTF1-GC and CTF2-GC. We choose MTF-GC in [22] as the
baseline for the spatially informed case. For the spatially informed
methods, we set λinit

n = 3 and decrease the influence of the prior
according to λpn =

(
1−

(
p−1
P

))α
λinit
n . Where P is the number of

total iterations. The parameter α is set to 3 for the first 5 iterations
and 1 for the remaining iterations. The extraction performance is
measured in terms of the improvement of the signal-to-distortion
ratio (SDR), ∆SDR [37].

The convergence behavior of all the studied methods depicted in
Fig. 2 shows that in both constrained and unconstrained conditions,
the proposed methods based on the CTF model outperform the
counterparts based on the MTF model in reverberant conditions. We
define two runtime factors as

γMTF
n =

tn
tMTF

, γGC
n =

tn
tUC
n
, (32)

where tn is the runtime per iteration of the compared method, tMTF

is the runtime per iteration of MTF, and tUC
n is the runtime per

iteration of the corresponding unconstrained method. The runtime
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Fig. 2. Convergence behavior of the proposed method and compared
methods in terms of average ∆SDR with two target sources.
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Fig. 3. ∆SDR of the proposed method and the baseline.

factors of all algorithms are shown in Table 1. The runtime factor
γGC
n for MTF-GC, CTF1-GC and CTF2-GC are 2.02, 1.62 and

1.45, respectively. As can be seen in Fig. 2, spatially informed
methods can achieve reasonable extraction performance within 5
iterations while the blind ones need more than 20 iterations to
converge and are likely to fail to extract target signals. Therefore,
the spatially informed methods not only yield significantly better
extraction performance but also converge faster than the blind ones,
showing the efficacy of (24)−(28).

Table 1. Runtime factors of algorithms

MTF CTF1 CTF2 MTF-GC CTF1-GC CTF2-GC

γMTF
n 1 1.82 2.62 2.02 2.95 3.81

γGC
n 1 1 1 2.02 1.62 1.45

The extraction performance of the spatially informed methods
after 50 iterations is shown in Fig. 3. The number of cases
corresponding to ∆SDR ≥ 5 dB achieved by MTF-GC, CTF1-GC
and CTF2-GC, are 18%, 59%, 79% for target 1 and 16%, 62%, 90%
for target 2, respectively. Hence, the proposed spatially informed
extraction method outperforms the state-of-the-art MTF. Even with
Ln = 2 , the extraction performance is significantly improved
relative to the MTF baseline.

5. CONCLUSION

This paper studied the problem of source extraction in reverberant
environments. Unlike the existing spatially informed extraction
methods, which are based on the MTF model, we adopted the CTF
model, which is able to better model the array signals in the STFT
domain. We then developed an algorithm to estimate the demixing
system with this CTF model. Simulations were carried out and
the results show that the presented method has achieved reasonable
extraction performance even in highly reverberant environments.
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